Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 250: 126219, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567518

RESUMO

Wound infections with rising incidences of multi-drug resistant bacteria are among the public health problems worldwide. The current study describes wound dressing materials made from biodegradable polyhydroxybutyrate (PHB) combined with AgNPs and gelatin (AgNPs/Gelatin/PHB). Microbial PHB was mixed with gelatin (1:2) to form a polymer matrix which was loaded with different concentrations of AgNPs (8.3-133 µg/mL). The statistical results of AgNPs synthesizing based on Box-Behnken design revealed that 1.247 mM silver nitrate and 24.054 % of Corchorus olitorius leaf extract concentration at pH (8.07) were the optimum values for the biosynthesis. UV-Vis spectroscopy, FTIR study and XRD reflects that nanoparticles are formed. The UV-Vis spectroscopy of Gelatin/PHB/AgNPs exhibited two specific bands at 298 nm and 371 nm, which confirm the formation of the conjugate. AgNPs had MICs and MBCs of (24.9, 24.9, and 12.45 µg/mL) and (33.25, 33.25, and 16.6 µg/mL) against (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). The MIC and MBC of AgNPs/Gelatin/PHB against the same tested bacteria were 31.1 µg and 41.5 µg, respectively. AgNPs/Gelatin/PHB exhibit excellent antimicrobial efficacy against bacteria. Sterilized gauze loaded with 31.1 µg of AgNPs/Gelatin/PHB acted as an effective wound dressing. Thus, the study highlights the importance of wound dressings developed from degradable AgNPs/Gelatin/PHB in enhancing antimicrobial efficiency and facilitating a better wound healing process.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Probióticos , Antibacterianos/farmacologia , Antibacterianos/química , Gelatina , Nanopartículas Metálicas/química , Bactérias , Bandagens , Testes de Sensibilidade Microbiana
2.
BMC Microbiol ; 22(1): 183, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869433

RESUMO

BACKGROUND: Polyhydroxybutyrate (PHB) is a biopolymer formed by some microbes in response to excess carbon sources or essential nutrient depletion. PHBs are entirely biodegradable into CO2 and H2O under aerobic and anaerobic conditions. It has several applications in various fields such as medicine, pharmacy, agriculture, and food packaging due to its biocompatibility and nontoxicity nature. RESULT: In the present study, PHB-producing bacterium was isolated from the Dirout channel at Assiut Governorate. This isolate was characterized phenotypically and genetically as Bacillus cereus SH-02 (OM992297). According to one-way ANOVA test, the maximum PHB content was observed after 72 h of incubation at 35 °C using glucose and peptone as carbon and nitrogen source. Response surface methodology (RSM) was used to study the interactive effects of glucose concentration, peptone concentration, and pH on PHB production. This result proved that all variables have a significant effect on PHB production either independently or in the interaction with each other. The optimized medium conditions with the constraint to maximize PHB content and concentration were 22.315 g/L glucose, and 15.625 g/L peptone at pH 7.048. The maximum PHB content and concentration were 3100.799 mg/L and 28.799% which was close to the actual value (3051 mg/l and 28.7%). The polymer was identified as PHB using FTIR, NMR, and mass spectrometry. FT-IR analysis showed a strong band at 1724 cm- 1 which attributed to the ester group's carbonyl while NMR analysis has different peaks at 169.15, 67.6, 40.77, and 19.75 ppm that were corresponding to carbonyl, methine, methylene, and methyl resonance. Mass spectroscopy exhibited molecular weight for methyl 3- hydroxybutyric acid. CONCLUSION: PHB-producing strain was identified as Bacillus cereus SH-02 (OM992297). Under optimum conditions from RSM analysis, the maximum PHB content and concentration of this strain can reach (3100.799 mg/L and 28.799%); respectively. FTIR, NMR, and Mass spectrometry were used to confirm the polymer as PHB. Our results demonstrated that optimization using RSM is one of the strategies used for reducing the production cost. RSM can determine the optimal factors to produce the polymer in a better way and in a larger quantity without consuming time.


Assuntos
Bacillus cereus , Butiratos/metabolismo , Peptonas , Bacillus cereus/genética , Carbono , Glucose , Hidroxibutiratos , Poliésteres , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Microorganisms ; 9(11)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34835520

RESUMO

Polyhydroxybutyrates (PHBs) are macromolecules synthesized by bacteria. Because of their fast degradability under natural environmental conditions, PHBs were selected as alternatives for the production of biodegradable plastics. Sixteen PHB-accumulating strains were selected and compared for their ability to accumulate PHB granules inside their cells. Isolate AS-02 was isolated from cattle manure and identified as Bacillus wiedmannii AS-02 OK576278 by means of 16S rRNA analysis. It was found to be the best producer. The optimum pH, temperature, and incubation period for the best PHB production by the isolate were 7, 35 °C, and 72 h respectively. PHB production was the best with peptone and glucose as nitrogen and carbon sources at a C/N ratio of (2:1). The strain was able to accumulate 423, 390, 249, 158, and 144 mg/L PHB when pretreated orange, mango, banana, onion peels, and rice straw were used as carbon sources, respectively. The extracted polymer was characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and GC-MS spectroscopy, which confirmed the structure of the polymer as PHB. The isolate B. wiedmannii AS-02 OK576278 can be considered an excellent candidate for industrial production of PHB from agricultural wastes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...